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FOREWORD

This report summarizes work performed during the first
ten months of Contract NAS8-27012, "Study of Propellant Dy-

namics in a Shuttle-Type Launch Vehicle." The work was con-

ducted by Lockheed Missiles & Space Company, Inc., Huntsville
Research & Engineering Center, for George C. Marshall Space
Flight Center of the National Aeronautics and Space Administra-
tion. The contract is administered under the direction of the
Aero-Astrodynamics Laboratory, NASA-MSFC, with Mr. Larry

Kiefling as Contracting Officer Representative.
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SUMMARY

This report describes a method and an associated digital computer program

for evaluating the vibrational characteristics of large liquid-filled rigid wall

tanks of general shape. A solution procedure was developed in which slosh

modes and frequencies are computed for systems mathematically modeled as

assemblages of liquid finite elements. To retain sparsity in the assembled

system mass and stiffness matrices, a compressible liquid element formula-

tion was incorporated in the program.

The approach taken in the liquid finite element formulation is compatible

with triangular and quadrilateral structural finite elements so that the analysis

of liquid motion can be coupled with flexible tank wall motion at some future

time. The liquid element repertoire developed during the course of this study

consists of a two-dimensional triangular element and a three-dimensional

tetrahedral element.

A number of example problems were analyzed with the propellant dy-

namics computer program. The results of these analyses compared favorably

with known closed form solutions. Solutions computed for several finite element

models of liquid sloshing in a rigid rectangular container are presented.

iii

LOCKHEED - HUNTSVILLE RESEARCH & ENGINEERING CENTER



LMSC-HREC D225823

CONTENTS

Section Page

FOREWORD ii

SUMMARY iii

1 INTRODUCTION 1-1

2 FORMULATION OF THE EIGENVALUE PROBLEM 2-1

2.1 System Equations of Motion 2-1

2.2 Liquid Finite Elements 2-4

3 COMPUTER PROGRAM 3-1

4 RESULTS 4-1

5 REFERENCES 5-1

iv

LOCKHEED- HUNTSVILLE RESEARCH & ENGINEERING CENTER



LMSC-HREC D225823

Section 1

INTRODUCTION

During this study, a method and an associated digital computer program

were developed for computing the free undamped vibrational characteristics

of large liquid-filled tanks of general shape. Solution procedures were formu-

lated in which systems are mathematically modeled as assemblages of liquid

finite elements.

Unlike previous investigations (Refs. 1, 2, and 3), the methods developed

during this study satisfy two fundamental requirements: (1) the procedure is

suitable for analyzing large systems such as Space Shuttle vehicles, which

typically involve thousands of degrees of freedom; and (2) the approach to liquid

representation is compatible with triangular and quadrilateral structural finite

elements, so that the analysis of liquid motion can be coupled with flexible tank

wall motion at some future time.

Solutions to eigenvalue problems resulting from large finite element

networks can be obtained economically only if the assembled system mass and

stiffness matrices exhibit sparse and/or banded characteristics. Most past

investigations of finite element liquid sloshing problems that are reported in

the literature are based on the assumption that fluid is incompressible. This

assumption invariably yields system matrices that are completely full; conse-

quently, the resulting computer programs are restricted to problems of moderate

size (usually 200 degrees of freedom or less). In this study the effects of liquid

compressibility are included in the finite element formulation, and the resulting

system matrices exhibit the same sparse characteristics as an analogous three-

dimensional solid finite element formulation. As a result, sparse and/or

bandmatrix solution procedures (such as the matrix iteration method in-

corporated in the Lockheed-Huntsville SNAP/Dynamics program, Ref. 4 can

be used to solve the co2 MX - KX = 0 eigenvalue problem.

1-1
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The mathematical model of a fluid system consists of liquid finite element

representations that can easily be merged with solid shell finite element repre-

sentations of tank walls. The element repertoire developed during the course

of the study consists of a two-dimensional triangular element and a three-

dimensional tetrahedral element. Particular care was taken to ensure complete

compatibility between the liquid element formulations and the solid plate and

membrane formulations incorporated in the SNAP/Dynamics program. As in

SNAP, individual element energy matrices are formulated relative to imbedded

intrinsic reference frames. This apparatus makes it easy to add new element

formulations to the program, since it is necessary only to construct subrou-

tines for computing the corresponding intrinsic mass and stiffness matrices,

with element dimensions and fluid properties supplied through the calling

sequence from general routines.

The generalized coordinates used to characterize individual element

energies are three-component displacement vectors associated with each

element node. System mass and stiffness matrices are constructed by ex-

pressing total system energies as the sum of individual element energies and

invoking displacement compatibility among connecting elements through their

common nodes.

1-2
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Section 2

FORMULATION OF THE EIGENVALUE PROBLEM

2.1 SYSTEM EQUATIONS OF MOTION

The kinetic and potential energies of a system may be expressed in

matrix form as:

o .*
T = M42

and

V = 2 K4 ,

where b is the generalized coordinate vector, and M and K are the mass

and stiffness matrices of the system. In the absence of dissipative effects and

external forces, the Lagrange equations yield

M~+K'4 = 0 . (2)

Assuming solutions are in the form of cJ = X coscOt, Eq. (2) is reduced to the

usual linear vibrational eigenproblem

cO MX - KX= 0 .

2-1
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In this study, node point displacement components are used explicitly

as system generalized coordinates, so that for a network composed of a total

of n system nodes

1
v 2
V

= t ' , (4)

n
V

where v is a vector containing the three motion components of node i.

The total system kinetic and potential energies may be expressed as

N

T = E T., and
j=1 J

(5)
N

V =E V.
j=l 

-- -- .~~~~~~~~~~~~~~~th
where T. and V. represent the kinetic and potential energies of the jh liquid

3 J
element in terms of the system generalized coordinates, and N is the total

number of finite elements in the network.

The kinetic and potential energies of liquid element j are expressed as

1'*
TJ = 2 * Mj (Pj, and

(6)
_1 *

V. = -K.q2.

2-2(Pj K j

2--2
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where M. and K. are the mass and stiffness matrices of the element in terms

of element generalized coordinates. In the propellant dynamics computer pro-

gram, element energies are expressed in terms of explicit nodal displacements;

so that, where u i is a vector containing the three motion components of node i

in directions parallel to the intrinsic reference frame axes of element j,

u1
2

U

q.= . (7)

mMu

In Eq. (6), m is number of nodes interconnected by element j.

To transform element energy matrices M. and K. into system coordinates,
J3 J

a coordinate transformation is performed such that

oj = R 4 (8)

Substituting Eq. (8) into Eqs. (6) yields

T 1 M , andTJ = 2 J 'jA n

(9)

J = 2 J

where

M. = R. M. R.j, and

(10)

K. = R. K.R.
J J J J3

2 -3
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Substitution of Eqs. (9) into Eqs. (5) yields the total system kinetic and potential

energies in terms of the desired coordinates.

For purposes of specifying node restraints and system boundary condi-

tions, unique reference frames are associated with each system node, and the

directions of node displacements are defined relative to these nodal reference

frames. Consequently, the transformation matrix R. includes the effects
J

of: (1) the orientation of the intrinsic reference frame of element j; and (2)

the orientations of the nodal reference frames associated with nodes 1 through

m.

The procedure described above is identical to that incorporated in SNAP/

Dynamics, and the sparsity of the resulting system matrices is the same as

would be obtained in a solid finite element formulation. However, if the element

matrices, Mj and K., were formulated assuming liquid incompressibility,
J3

modification of the system matrices produced by Eqs. (5) would be required

before solution to the eigenproblem could be attempted. Expressions would

be introduced to ensure that the entire liquid volume would undergo zero volume

change. These expressions would necessarily relate the relative motions of

all network nodes that appear on the surfaces of the finite element model. Conse-

quently, sparsity in the assembled system matrices would be lost, and those

rows and columns associated with surface nodes would be completely full. This

procedure would drastically restrict the size capability of the resulting computer

program. By incorporating the effects of compressibility in the element formu-

lations, the system matrices produced by Eqs. (5) can be used directly, and

sparse and/or bandmatrix procedures can be used to solve the resulting eigen-

value problem.

2.2 LIQUID FINITE ELEMENTS

The liquid is assumed to be inviscid and compressible. The effect of

small variation in mass density caused by the compressible assumption is

neglected in formulating element kinetic energies.

2 -4
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The intrinsic reference frame associated with a tetrahedral liquid ele-

ment is illustrated on Fig. 1. The origin of the reference frame coincides with

node 1; intrinsic axis 1 extends from node 1 to node 2; axis 2 lies in the plane

of nodes 1, 2, and 3 and is directed so that node 3 has a positive 2 coordinate.

The relative displacements ql, q 2 , ... , and q 6 as shown on Fig. 1 completely

define the deformation of the element. As the element moves with the liquid

network, the intrinsic reference frame travels with node 1. The motion of

the reference frame is represented by ql, q 2 , ... , and q 6 , as illustrated on

Fig. 1. Liquid element mass and stiffness matrices are derived in terms of

the twelve coordinates ql through q6 and ql through q6.

A linear deformation field is assumed for the element; it is expressed as

w 1 x 2 x3
W

2
= 1 x

2
X3 A Q, or (11)

w 3 1x x
2

x
3

w = X A Q, (12)

where w defines the motion of a particle on the interior of the element with

intrinsic coordinates (x1 , x2 , x3 ) and Q is a vector of the twelve coordinates

ql through q 6 and ql through q 6 . The terms of the coefficient matrix A

are determined according to the physical dimensions of the element.

The kinetic energy of a liquid element is expressed as the following

volume integral

T = P( + w
2
+ w

3
) d V , (13)

volume

2-5
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A q5I I 5

nod e

3

q 6

nod e 1

1

Fig. 1 - Intrinsic Reference Frame and Generalized Coordinates
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where p is the mass density of the liquid. Substituting Eq. (12) into Eq. (13)

yields the element kinetic energy as a quadratic form in terms of the intrinsic

generalized coordinates, so that

~ 1 * 
T = Q M , (14)

where M represents the intrinsic element mass matrix.

The total potential energy of a liquid element is expressed as the summa-

tion of two energies: (1) gravitational potential; and (2) dilatational potential.

The potential energy incurred by gravity considerations is expressed by the

following surface integral

pG f gn 2dS (15)
~G = i

p
g¢d 

surface

where gn is the component of the gravitational acceleration vector normal to

the surface differential, dS, and 4 is the component of surface motion normal
to the surface differential. Dilatational energy is expressed as

1 /O 2
V D = kfO dV (16)D

volume

where K is the liquid bulk modulus and 0 represents the volume change of the

element. Substituting into Eqs. (15) and (16) the normal component of surface

motion, ¢, and the element dilatation, 0, in terms of the assumed displacement

field represented by Eqs. (12) yields the element potential energies as quadratic

forms in terms of the intrinsic generalized coordinates, so that

2 -7
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-~ 1 and
G z Q KG Q and

(17)

1 *
VD =-Q QD =2 KD Q

The total element potential energy is

V = VG + D, or

(18)

~ 1 * QV = KQ

where K represents the intrinsic element stiffness matrix and is equal to the

summation of KG and KD'

A transformation of coordinates is performed so that the element energy

matrices appearing in Eqs. (14) and (18) are expressed in terms of explicit

nodal displacements. The resulting matrices are then used to form the as-

sembled system mass and stiffness matrices as described in the previous

section.

Energy expressions for the two-dimensional triangular element included

in the program are derived in a manner similar to the tetrahedral element.

2-8
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Section 3

COMPUTER PROGRAM

During this study a general purpose digital computer program was de-

veloped for computing the slosh modes and frequencies of finite element repre-

sentations of liquid filled rigid wall tanks of general shape. Some of the features

of the program are as follows:

* The element repertoire consists of a two-dimensional triangular
element and a three-dimensional tetrahedral element.

-* All operations involved in forming element and system matrices
are performed in double precision.

* A moderate-size eig ensolution routine is incorporated that
will accommodate X M X - K X = 0 eigenproblems of up to
approximately 75 degrees of freedom in double precision and
100 degrees of freedom in single precision.

* System nodes may be resequenced, giving the user maximum
control over the bandwidth of system matrices.

* Individual reference frames may be assigned to the system
nodes. Nodal motion components are given relative to these
reference frames.

* Automatic network generators are incorporated to facilitate
the input of node reference frame assignments, node restraint
conditions, node position coordinates, and element definitions.

* SC 4020 plotting of undeformed and deformed element networks.

* Intrinsic local coordinate systems are used for individual elements.

Like SNAP/Dynamics, the program is arranged in a modular fashion to

provide a convenient framework for modifying and expanding various parts of

the program. New element formulations can be included in the element repertoire

without altering any of the existing code. The module for computing eigensolu-

tions can also be easily replaced.

3-1
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The program is coded in Fortran V and designed for use on the NASA-

MSFC Univac 1108 Exec VIII system.

3-2
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Section 4

RESULTS

Solutions computed for liquid sloshing in a rigid rectangular container

are presented. The solutions are compared with known closed-form solutions.

The geometric dimensions of the liquid volume are 1 meter wide, 2 meters

long and 1 meter deep. The mass density, bulk modulus and equivalent gravita-

tionsl acceleration of the liquid are 1000 kg/mn3 , 2 x 108 kg/m-sec2 and 9.807
2

m/sec2 , respectively.

Results for six finite element models of the same liquid volume are pre-

sented. Three of the networks are two-dimensional and are composed of tri-

angular elements. The two-dimensional models, which are referred to as

2D-a, 2D-b, and 2D-c, are illustrated on Fig. Z. The other three models are

three-dimensional and are made up of tetrahedral elements. The three-di-

mensional models, which are referred to as 3D-a, 3D-b, and 3D-c, are shown

on Fig. 3. The number of elements contained in each model and frequency com-

parisons between closed-form solutions are given in Table 1. Plots illustrating

the slosh modes computed with the two-dimensional models are given in Fig. 4.

Plots illustrating the modes computed with the three-dimensional models are

given in Fig. 5.

4-1
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2D -a

2D -b

ZD-c

Fig. 2 - Arrangements of Two-Dimensional Elements
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Mode 1, Frequency = 0.587866 cps

Mode 2, Frequency = 0.70481Z cps

Fig. 4 - Mode Shapes and Frequencies- Case ZD-a
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Mode 1, Frequency = 0.595833 cps
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Mode 2, Frequency = 0.848202 cps

Fig. 4 - (Continued) - Case 2D-b
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Mode 3, Frequency = 0.970054 cps

Mode 4, Frequency = 1.02322 cps

Fig. 4 - (Continued)- Case ZD-b
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Mode 1, Frequency = 0.598934 cps 

Mode 2, Frequency = 0.889266 cps

Fig. 4 - (Continued) - Case 2D-c
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Mode 3, Frequency = 1.05944 cps
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Mode 4, Frequency = 1.08128 cps

Fig. 4 - (Continued) - Case 2D-c

4-9

LOCKHEED- HUNTSVILLE RESEARCH & ENGINEERING CENTER



LMSC-HREC D225823

Mode 1, Frequency = 0.588683 cps

Mode 2, Frequency = 0.709116 cps

Fig. 5 - Free Surface Mode Shapes - Case 3D-a
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Mode 1, Frequency = 0.589386 cps

Mode 2, Frequency = 0.711981 cps

Fig. 5 - (Continued) - Case 3D-b
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Mode 1, Frequency = 0.589449 cps

Mode 2, Frequency = 0.815962 cps

Fig. 5 - (Continued) - Case 3D-c

4-12

LOCKHEED - HUNTSVILLE RESEARCH & ENGINEERING CENTER



LMSC-HREC D225823

Section 5
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